Ex Ovo choriion allantoic membrane as a pre-screening model for testing clinical biomaterials for bone tissue regeneration

N Kohli1, S Ho1, M Snow2, V Sharma1, S Powell3, M Woodruff3, L Hook1, E García-Gareta1
1Regenerative Biomaterials Group, RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, UK.
2Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK.
3Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.

Background: Chorion allantoic membranes (CAMs) of the chicken embryos have been used as a model to study angiogenesis in ovo for nearly 20 years1. However, there are disadvantages associated with the traditional in ovo CAM assays which limit an easy access to the developing CAM.

We utilised the ex ovo method published before2 and herein report the accuracy and feasibility of this method to examine and compare the angiogenic potential of clinically utilized scaffolds as well as scaffolds under development for bone tissue regeneration.

Aim: To establish a pre-screening method for assessing the suitability of biomaterials intended for clinical use

Method

Day 3 – Ex ovo culture

Under sterile conditions, the eggs are cracked open using a triangular magnetic stirrer and the contents are placed in a sterile plastic weighing boat. The viability of the eggs is assessed by looking for a beating heart. The embryos are grown in the shell-less culture system with “80% humidity, 37.5°C incubation temperature and 3% CO2”.

Day 12 – Ex ovo

The CAM network is extensively developed by day 9. Up to 6 different scaffolds (arrowed) are carefully placed on the CAM under sterile conditions. The ex ovo cultures are then returned to the incubator for another 3 days.

Day 9 – Ex ovo

The CAM network is extensively developed by day 9. Up to 6 different scaffolds (arrowed) are carefully placed on the CAM under sterile conditions. The ex ovo cultures are then returned to the incubator for another 3 days.

Results & Discussion

• At day 12, numerous allantoic vessels were seen to develop radially towards the more angiogenic scaffold in a spoke-wheel pattern compared to the less angiogenic scaffolds.

• Histological analysis corroborated with macroscopic analysis where more number of blood vessels were seen in scaffolds that appeared more angiogenic compared to scaffolds that appeared less angiogenic. An example is shown in figure 1.

Conclusion

• This ex ovo method is a safe and inexpensive way of assessing the angiogenic potential of scaffolds compared to Matrigel assays or ELISAs which are expensive and complex and are far from mimicking the in vivo situation.

• The method described herein allows for a direct comparison of different scaffolds on the same CAM.

• This method could potentially be applied routinely as a pre-screening assay to validate scaffolds for bone tissue engineering prior to in vivo animal studies.

References: