Keloid Fibroblast Heterogeneity and the Development of an Anti-Recurrence Keloid Biomaterial Treatment

Stuart Brown, Elena Garcia-Gareta
Regenerative Biomaterials Group, Restoration of Appearance and Function Trust (RAFT) Institute
Mount Vernon Hospital, Northwood, HA6 2RN, United Kingdom

AIM: DEVELOP A KEOID FIBROBLAST-INHIBITING DERMAL SCAFFOLD

Proposed Treatment Method
- Surgical incision allows application of a dermal scaffold, 2 benefits:
 1) Management of wound healing – i.e. tension, shape
 2) Specific anti-cell activity
- Can still use adjunct treatment

Scaffold design criteria
- Minimal inflammation
- Usability consistent with current scaffolds
- Tailored persistence in wound / resorption
- Biological activity: distinguish pathological fibroblasts from normal

RAFT cell bank
- Fibroblasts derived from keloid biopsy 1996-2003 (n=30)
- Cells recovered, expanded and characterised (n=12, process ongoing)

Proliferation of keloid cells
- kFBs reported as more proliferative, with lower serum requirement than normal fibroblasts¹
- kFBs highly variable, some lines more proliferative, some not

Metabolic rate of keloid cells
- kFBs reported as more metabolically active than normal fibroblasts²
- kFBs and controls given AlamarBlue reagent (“AB”, 2hrs), measure fluorescent change as substrate metabolised.
- Highly active kFB still show contact inhibition

Heterogeneity present in keloid fibroblast isolates
- In vivo, keloid tumours show heterogeneity³: in kFB culture?
- Seed kFBs at low density on 96 well plate (5000 cells / well)
- Follow AB metabolism
- Heterogeneity: single well with +2 SD increased AB metabolism, compared to the other 95 wells, at 3 consecutive time-points.
- Likely due to paracrine signalling

Growth in 3D scaffolds
- kFB differential growth reported on chitin derived scaffold⁴
- kFB growth on other natural polymers?
- Differences with NHDF?

Conclusion
Keloid fibroblast behaviour is more varied than reported in the literature
Evidence of sub-populations of metabolically distinct cells common to keloid fibroblast isolates: important for scaffold development

kFBs show similar behaviour on natural polymer scaffolds

References