## Novel Approach for Quantification of Pore-size for Scaffolds (>16 cm<sup>2</sup>) **Using ImageJ Software for Quality Control**



## Vaibhav Sharma<sup>1</sup>, Dale Moulding<sup>3</sup>, Elena García-Gareta<sup>1</sup> and Lilian Hook<sup>2</sup>

<sup>1</sup>Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood, HA6 2RN, United Kingdom. <sup>2</sup>Smart Matrix Ltd, Leopold Muller Building, Mount Vernon Hospital, Northwood, HA6 2RN, United Kingdom. <sup>3</sup>UCL Great Ormond Street Institute of Child Health (ICH), 30 Guilford Street, London WC1N 1EH

Introduction: Computerised softwares available to quantify the microstructure of biomaterials include MATLAB, ICY, Avizo, Image Pro and others. However, these techniques are only used to quantify pore sizes over small sample areas with a homogenous pore structure. However, as the size of the biomaterials increases (area>4 cm<sup>2</sup>) and the pore distribution becomes gradient the analysis becomes more difficult.

Aim: To establish a method using ImageJ software to quantify pore size distribution in materials with gradient porosity distributed over an area of 1 – 100 cm<sup>2</sup>

## Method & Results



Macroscopic photograph of a piece of fibrinalginate scaffold.

the image



Light scanning confocal microscopy (LSCM) image of a 5 cm \* 5 cm piece of fibrin-alginate scaffold showing pore distribution and pore interconnection.





| 🄟 (Fiji Is Jus | t) ImageJ     |              |             |      | -     | -     |         | $\times$ |
|----------------|---------------|--------------|-------------|------|-------|-------|---------|----------|
| File Edit      | Image Process | Analyze Plug | jins Window | Help |       |       |         |          |
|                | Туре          | •            | 8-bit       |      | Ø     | b     | \$      | ≫        |
| Rectangle*,    | Adiust        | •            | 16-bit      |      | Click | chere | e to se | earch    |
|                | Show Info     | Ctrl+l       | ✔ 32-bit    |      |       |       |         |          |
| -              | Properties    | Ctrl+Shift+P | 8-bit Color |      |       |       |         |          |
|                | Color         | •            | RGB Color   |      |       |       |         |          |
|                | Stacks        | •            | RGB Stack   |      |       |       |         |          |
|                | Hyperstacks   | •            | HSB Stack   |      |       |       |         |          |
|                | Crop          | Ctrl+Shift+X | Lab Stack   |      |       |       |         |          |

Pore Range (un



## Conclusion

skeletonizing the image

- Using this method, pore distribution of a fibrin-alginate scaffold (49 cm2 > 1x108 pixels) was quantified within three minutes on a standard PC and measured over 227,000 pores.
- Such tools offer potential of repeatability and effectiveness in data quantification which will be valuable for quality control during biomaterial manufacturing processes.

Acknowledgements: This work was supported by the Restoration of Appearance and Function Trust (RAFT, UK, registered charity number 299811) and Smart Matrix Limited.

the image.



Ultimate Points

Watershed

Image Expression Parser (Macro)

